Accounting for Uncertainty When Measuring Ecosystem Services

EcoMetrix Solutions Group <u>info@ecometrixsolutions.com</u> <u>December 11, 2014</u>

We use ecological models for many purposes:

- To help inform decisions,
- To understand consequences of previous decisions,
- To predict future issues/needs/opportunities,
- To measure transactions (e.g., markets/exchanges)

VALUE

SERVICES

FUNCTIONS

LANDSCAPE

ATTRIBUTES

e.g., Water Regulation -Moderating Flows

e.g., Infiltration

e.g., Substrate Composition

Models try to provide a useful understanding of the world around us . . .

www.despair.com

Uncertainty Associated with Model Construction

Uncertainty sources from the models:

Model sensitivity/coarseness Model completeness Model accuracy

Transpiration Function Phase 2

Uncertainty sources from the models:

Model sensitivity/coarseness Model completeness Model accuracy

Transpiration Function Phase 2

Uncertainty sources from the models:

Model sensitivity/coarseness Model completeness Model accuracy

Reduce Recognize Resolve

Reduce

- Base models on best available science (literature, expert opinion)
- Review, validate and test all models to the best extent possible

Recognize

Recognize

- Produce models that account for all relevant attributes even if you cannot measure them
- Tag areas of known uncertainty in the model (disagreement between experts, very complex systems that have been simplified, etc.)
- If possible, produce results that are either expressed as a probability or have error bars accompany the results.

Resolve

- Limit types of decisions that the model can be used for
- Develop models with multiple sensitivities to allow a user to balance ease of use and certainty

Uncertainty Associated with Data Inputs

Uncertainty sources from data (with a focus on site level, field collected data):

- Sampling density (lumping/splitting map units, number of sample points, etc.)
- Sampling repeatability
- Sampling accuracy

As sites get larger, maintaining the same intensity of sampling

becomes difficult

Uncertainty sources from data (with a focus on site level, field collected data):

- Sampling density (lumping/splitting map units, number of sample points, etc.)
- Sampling repeatability
- Sampling accuracy

Uncertainty sources from data (with a focus on site level, field collected data):

- Sampling density (lumping/splitting map units, number of sample points, etc.)
- Sampling repeatability
- Sampling accuracy

Addressing Data Uncertainties:

Reduce

- Develop user friendly data collection protocols
- Use an automated data collection system that prevents users from entering nonsensical data
- Develop data collection manuals to guide end users
- Don't let just any clown collect the data

Addressing Data Uncertainties:

Recognize

- Test data collection repeatability and accuracy
- Build identified or known uncertainties into models (e.g., add uncertainty node in Bayes net)

Addressing Data Uncertainties:

- Resolve
- Require users to be certified for the appropriate level of use
- Use conservative values based on potential error ranges

Concluding points:

- Uncertainty will exist within all models/decision support tools
- A good modeling process or decision support tool should:
 - Reduce uncertainty where possible (not all uncertainty can or should be eliminated),
 - Track uncertainty, and
 - Resolve how remaining uncertainty is dealt with in the decision application

The appropriate level of uncertainty is driven by the context of the decision being made

Thank you for your time . . .